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I.  NOMENCLATURE
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Average NEES at time instant &
State estimation error at time
instant k£, dim(4,1)

Nonlinearity function in the
dynamic state equation, dim(2,1),
9.81 m/s’ gravity acceleration
Matrix in radar measurement
equation, dim(2,4)

Kalman gain matrix, dim(4,2)
Number of particles in PF

Matrix needed to approximate (in
the linear statistic fashion) the
nonlinearity f(s), dim(2,4)
Posterior pdf of state vector
Multidimensional Gaussian pdf
with mean § and covariance matrix
P calculated at s

Normalized weights for PF
Intensity of process noise in target
model

Covariance matrix of process noise
in target model, dim(4,4)
Covariance matrix of measurement
error, dim(2,2)

Target state at time instant &,
dim(4,1)

One-step ahead predicted state and
corresponding covariance matrix,
dim(4,1) and dim(4,4) respectively
Filtered state and corresponding
covariance matrix

Time interval between radar
measurements

Module of target velocity
Measurement error on the
Cartesian coordinates, dim(2,1)
Target abscissa

Target ordinate

Target coordinates at time ¢,
Radar coordinates

Radar measurement vector,
dim(2,1)

Collection of all radar
measurements up to time k
Ballistic coefficient of target
Transition matrix of target state
equation, dim(4,4)

Angle between horizontal axis and
direction of target motion

Scaling parameter of UKF

Air density

Error standard deviations of radar
measurements for range and
elevation angle, respectively
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Variance of measurement errors in
Cartesian coordinates (abscissa,
ordinate) and their
cross-covariance, respectively

2 2
04>91>0ap

Yy ={s;(0):i=  Set of random samples

1,...n} (particles)

Jis Information matrix, dim(4,4)

v, F, Jacobians, dim(4,4) and dim(2,4),

respectively

&), (D), W, Sigma points and weights for UKFE.

II.  INTRODUCTION

The problem of tracking ballistic objects in the
reentry phase has attracted much attention of the
researchers for both theoretical and practical reasons.
Technically speaking we need to set up a stochastic
nonlinear filter due to the nonlinearity of the dynamic
state equation of the target; tracking filters have been
conceived for this purpose since the early days of the
invention of the Kalman filter [12]: see for instance
[13, 18, 3]. More recently, the following papers
have been published on this subject: [4, 11, 15].
Practical applications are in the fields of surveillance
for defense and for safety against the reentry of old
satellites. In relation to the second application, it is
known that the number of objects orbiting the Earth
has been continuously increasing since the launch
of the first satellite in 1957. They are old satellites,
pieces of satellites due to explosion and erosion, upper
stages of missiles, etc. It is relevant to have means
to detect, classify, and track these pieces of debris
[2]; big objects that reenter the atmosphere should be
accurately tracked to anticipate their landing points
on Earth. The aim of our study is to formulate the
nonlinear tracking filtering problem and to discuss
the application of several approximate filters.

Section III provides the models of kinematics
of the target and of the radar measurements. The
Cramer—Rao lower bound (CRLB) for nonlinear
discrete-time filtering problems is discussed in
Section IV. The four tracking filters to compare are
as follows.

1) the extended Kalman filter (EKF),

2) the statistical linearization also referred to as
CADET (Covariance Analysis DEscribing function
Technique) developed in the past by The Analytic
Sciences Corporation (TASC) [9],

3) the recently conceived unscented Kalman filter
(UKF) [15],

4) the particle filter (PF) [10].

These approximate techniques are discussed in Section
V. Every filter needs to be compared with the CRLB.
Results concerning the simulation of the tracking
filters, error analysis, comparison with the CRLB
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Fig. 1. Coordinate reference system.

and consistency tests are presented in Section VI
Our conclusions are collected in Section VII. The
contribution of this work to the state of the art is to
have compared the performance of two popular (the
EKF and the CADET) and two modern (the PF and
the UKF) trackers to the CRLB. Recommendations
to select the best filter in terms of performance and
computational cost are also given. A note on the
mathematical symbols; bold capitol letters represent
matrices, bold lower case letters denote vectors; the
apex T in [e]T stands for transposition of either a
matrix or a vector; E{e}, (e) denote the expectation
operator; x[i] and A[i, j] are, respectively, the ith entry
of vector x and the ijth entry of matrix A.

Ill.  MODELS OF TARGET MOTION AND OF RADAR
MEASUREMENTS

Consider an object which is launched from one
point on Earth to another point along a ballistic flight.
The kinematics of the ballistic object in the reentry
phase is derived under the following hypotheses.

The forces acting on the target are gravity, and drag.
The effects of centrifugal acceleration, Coriolis
acceleration, wind, lift force, and spinning motion

are ignored, due to their small effect on the trajectory.
Another simplifying assumption is related to flat Earth
approximation.

Having assumed a flat Earth, an orthogonal
coordinate reference system can be used with the
following variables (Fig. 1):

x 1s the abscissa,

y is the ordinate,

Xy and y, are the target coordinates at time £,

v is the velocity module,

~ is the angle between the horizontal axis and the
direction of motion.

The target motion is described by the following
discrete-time nonlinear dynamic state equation

Sk+1 :¢k(sk)+G{_Og} + W (D
where the state vector is
Sk é[xk oy wl' (2
and
P (s,) = Ps, + GI(s;) 3)
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Fig. 2(a). Example of target trajectory.
1 7 0 0 By exploiting the following identities
Al0 1 0 O
o= 4 V)= 2
00 17T @ cos (arctg (7)) = Neae
(7
000 sin (arctg (X)) -7
— 2 -
T 0 (6) can be rewritten as follows
G= ) ©)
r 5,121
0 2 f.(s,) = 70.5§p(sk[3]) s7[2] + s2[4] [ k } . (8)
Lo T B s, [4]

where T is the time interval between the radar
measurements. The drag is a force directed in
opposition to the target speed and with an intensity
equal to %(g /B)pv? [25]; being: g the gravity
acceleration, 3' the ballistic coefficient, p the air
density (typically it is an exponentially decaying
function of height, p = ¢;e™ where ¢, = 1.227,

¢, =1.09310~* for y < 9144 m, and ¢, = 1.754,

¢, = 1.49107* for y > 9144 m) and v the module of
target velocity. In terms of state vector components,
the drag is

fi(s,) = 70.5%p<sk[3])(si[2] + s2[4])

cos (arctg (ﬁ>)

se[2]

sin (arctg (%))
k

!t depends on the target mass, the body shape, and the
cross-sectional area of the target perpendicular to the direction
of motion. It is constant for high super-sonic speed, while due
to the formation of shock waves, it diminishes when target
velocity approaches Mach 1. In our study case (see Fig. 2(a))
the speed tends to Mach 1 just at the end of the trajectory, so the
approximation done (i.e.: § = constant) is quite good.

(6)

856

Process noise w, in (1) is modeled as a zero-mean
white Gaussian process with nonsingular covariance
matrix

73 T2
Q= 0 with 6 = 32 ©)
_q Q N = 2

5 T

where ¢ is a parameter related to process noise
intensity [1, p. 262]. The process noise accounts for
all forces that have not been considered in the model
and possible deviations of the model from the reality.
An example of a target trajectory is shown in
the following figure; the relevant parameters are:
B =40000 Kg-m™!-s2, g=1m?-s3, T =25,
Yo = 88 km, x, = 232 km, 7, = 190°, v, = 2290 m/s,
number of path samples N = 60. Fig. 2(a) shows the
trajectory in the x-y plane, while Fig. 2(b) depicts
the speed and acceleration of target versus time; the
strong target deceleration due to drag is apparent.
The measurements, collected by the radar for
target tracking, are the range r and elevation ¢; the
radar is located at x, = 0, y; = 0 in all the numerical
evaluations here. The error standard deviations of
these measurements are denoted as o, (for range)
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Fig. 2(b).

and o, (for elevation). Radar measurements are
transformed to the Cartesian coordinates d = rcose
and & = rsine (for measured target abscissa and

ordinate) so that the measurement equation is linear
z, = Hs, +v, (10)
where
T 1 0 0O
z, =1ld, h], H=

0 010

v, is the noise on the measured Cartesian coordinates;
it is independent of the process noise w,; it is
zero-mean white Gaussian with covariance matrix R,
[8, p. 155] with elements:

02 = 02 cos’(e) + r*o’ sin*(¢)
0?2 = o2sin’(e) + r’o> cos’(e) (1D

o = (02 —r?a?)sin(e)cos(e).

For all practical purposes this is a good
approximation? which greatly simplifies the tracking
algorithm; otherwise one would also have to take into
consideration the nonlinearity of the measurement
equation.

IV.  CRAMER-RAO LOWER BOUND FOR BALLISTIC
TARGET TRACKING

The objective of this section is to derive the
theoretical CRLB of the variance of estimation error
for the nonlinear dynamic system described by (1) to
(11). The optimal estimator for this problem cannot
be built and hence we resort to approximate filters
described in Section V. The theoretical lower bound,
which defines the best achievable performance,
plays an important role in algorithm evaluation and
assessment of the level of approximation introduced in
the filtering algorithms.

2The unbiased and consistent conversion of measurements is
described in [16]. According to [16], the measurement conversion
given by (10) and (11) is unbiased if raf/cr <04 and if o, <23°.
Both of these conditions are satisfied in the present study (see
Section VI) and therefore the conclusions achieved are valid.

Target Acceleration [m/52]

0 20 40 60 80 100 120
Time [s]

Speed and acceleration of target versus time for trajectory of Fig. 2(a).

A. General Framework for CRLB Derivation

The general framework for derivation of CRLB
of an unbiased estimator for non linear discrete-time
system is described in [23]. The sequence of
information matrices obeys the following recursion

Jio1 =D -DI'J, + D) 'D}? (12)

where for the case of additive Gaussian noise, as in
(1), and for the linear measurement equation as in
(10), we have that

D' = E{¥/Q ¥} (13)
D> = —E{¥/}Q ' = [D;'1" (14)
D =Q ' +E{H'R.} H} (15)
with Jacobian ¥, defined as
LA ARACHIR (16)

where [V %/ (s,)] indicates the matrix of the first
partial derivatives of the vector 1,ka (see (3)) with
respect to the state vector s,. Note that Jacobian ¥,
is evaluated at the true target state. Substitution of
(13)—(15) into (12) yields the following recursion

J =Q '+ E{HTRIZLH} - Q 'E{¥,}
[+ E(E[Q e E(¥/}Q . (7

The CRLB of an unbiased estimate of the state vector
at time index k is then [24]

CRLB{s,[j1} = J; ' [/, /], for j=1,2,3,4.

(18)

In the absence of process noise, the recursive equation
for computation of information matrix J;, follows from
(22]

Joo =@ N0, +H'R ! H. (19)
Note that (19) is identical in form to the EKF inverse
covariance matrix propagation in absence of process
noise. The difference is that Jacobian ¥, in the
calculation of information matrix is evaluated at
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the frue target state, while in the covariance matrix
propagation of the EKF it is evaluated at the estimated
target state.

The initial information matrix J,, is calculated as
the inverse of initial covariance matrix

Jo = PO\(I) (20)

where the initial covariance matrix corresponds to the
two-point differencing method of filter initialization
[8, p- 228], [1, p. 253]. A suitable expression for PO\O
is as follows

- 2 -
94 Odn
g 7 %an T
_% 2"_5 _%dn %dn
T T? T 77
Py = . 1)
Oan i
Gan ~Tp o T
% 50w T %
- T T2 T T2 -
which derives from the expression of s,
T Xo =X o= N
= 22
S0 = | X2 T V2 T (22)

B. Derivation of Jacobian and an Example

From (16) and (3) it follows that Jacobian ¥, can
be written as

¥, =P +GF, (23)
where the elements of
F, = [V, £ (s)]" (24)

858
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Influence of process noise intensity ¢ on CRLB for target position s, [1] = x, and s, [3] = y,.

are as follows

F,[1,11=0
F,[2,11=0
_lg 212D + (514D
Fk[l,z] - 2 6 Pr \/(Sk[Z])2 i (Sk[4])2
F,[2,2] = F,[1,4] 25
1
Fil1.3]= 5 & o sil20\ /(500202 + (51412
_ Le  sd2ls 4]
Fk[1,4] - 2 6 Pr \/(Sk[Z])2 i (Sk[4])2
1
F2.31= 54 consil41 (1202 + (514D
Clg 214D + (5202
Fl241= P S I2IP + AR

The estimate of the air density in (25) is given by

pp = cpe S B3 (26)
Jacobian ¥, depends on the target state vector, hence
the expectations in (17) are taken over ensemble

of s, (which is random due to process noise). The
implementation of recursion (17) is based on Monte
Carlo averaging over multiple realizations of the target
trajectory. Fig. 3 displays in the log-scale the square
root of the CRLB for the target position s;[1] = x,,
s¢[3] = y;, i.e., /CRLB{s;[11}, /CRLB{s;[3]} in
absence and in presence of process noise w; in the
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state equation (1). The parameters are as for Fig. 2,
and in addition o, = 100 m and o, = 0.017 rad. The
CRLB in the presence of process noise (¢ = 1 case)
was obtained by averaging over 100 Monte Carlo
runs. In absence of process noise the CRLB was
calculated using recursion of (19), where no averaging
is required. Observe from Fig. 3 that the CRLB on the
target position coordinates x and y, in the presence of
a modest amount of process noise, is practically equal
to the CRLB in absence of noise; only at the end of
the observation period the two curves differ a little
bit.

V.  TRACKING FILTERS

In this section we describe four recursive
estimators (filters) to be used for tracking a ballistic
object. These filters determine in approximate way
the mean and covariance matrix of the probability of
target state conditioned to the measured radar data:
p(s, | Z,) which is the probability density function
(pdf) of the vector s, given the set Z, é{zl,zz,...,zk}
of all measurements up to kth time instant. These
filters are the EKF, the CADET, the KF, and the PF.
All of them are based on approximations and our goal
is to assess the influence of a particular approximation
on the tracking accuracy. The filters are initialized
using the same two-point differencing method [8, p.
228], [1, p. 253], to match the computation of the
CRLB.

A. Application of EKF

See, for instance, [8, pp. 113-116] for details.
The prediction at time instant k + 1 given all the
measurements up to time instant k is carried out as
follows

~ R 0
Steik = Ye(S) + G ( )
—8 (27)

Pip=@+G F)P(®+G- F)"+Q

where ® and G are given by (4) and (5), while F, is
the Jacobian (see equations (25)) calculated at the
estimated state §k‘ « The estimation at time instant

k + 1 given all the measurements up to time instant
k + 1 can be done after calculating the Kalman

gain

K, =P, H HP,  H +R)" (28)
by the equations
§k+1\k+1 = §k+1\k + Kk+1(Zk+1 - H§k+1\k)
(29)

Pk+1\k+1 =I- Kk+1H)Pk+l\k'

The EKF only uses the first order terms in the Taylor
series expansion of the nonlinear state equation. In
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general, when the filtering problem is highly nonlinear
and the local linearity assumption breaks down, the
EKF may introduce large estimation errors due to
filter divergence.

B. Application of CADET

With this approach, instead of calculating the
derivative (24) once (as in the EKF), the coefficients
of the linear expression

f(s) = Ngs + £, (30)
are found by minimizing the mean of the squared
error [9], [8, pp. 117-121]

e = [f(s) — £, — Nys]"[£(s) — £, — N;s] (31)

at each iteration of the filter. CADET tries to
approximate the nonlinearity fi(s;) of (3) with a
linearity whose slope depends upon the variance of
input stochastic process s,. By doing the calculations
the following expressions are found

£i.(sp) = E{fi(sp)} + Npy (s, — E{s;})

=T,(s50) + Ny, (s, — ) (32)
with
Ng, = [E{f (sp)st } — E{f(s,)}E{s;}]cov~'(s;)
= [£,(sp)s] — £ (sp)S;Jcov ' (s,) (33)

being cov~!(s) the inverse of the covariance matrix
of the vector s. To design a suboptimal filter, it is
necessary to specify how the following quantities:
E{f,(sps; }, E{f,(s,)} and E{s,} are computed. In
principle, they could be obtained by the knowledge
of posterior density p(s, | Z,) which is not known.
The approximation made is to assume that this pdf
is Gaussian so that only the mean and covariance
matrix are needed; these, in turn, are substituted by
§k‘ « and Py, provided by the filter. Thus, the CADET
approach is similar in some aspect to the EKF, but
more accurate and complex. In fact, it requires the
calculation of the four-fold integrals

£, = /f(s)pN(s;ék‘k,Pk‘k)ds and

Skk

(34)
B (Syu)Siy = / B(s)s” Py (38 Pyge)ds

Skk

where pN(s;§k‘k,Pk‘k) is the multidimensional Gaussian
pdf with mean §k‘ « and covariance matrix Py,
calculated in the value s.

The prediction equations of the filter take the form

o n 0
Seripe = Yi(S) + G [ ]
—8 (35)

Py =(@+G NP (®+G- Ne)' +Q
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with

Nf,k = [fk(gk\k)glz\k - k(gk\k) §k\k]P1:\11'

§k‘k and Py, are given by the equations (29); the
equation (28) provides the Kalman gain K,.

The four-fold integrals in (34) have been
calculated as four-fold summations over a four-fold

interval [—5\/Pk lisil.s, [Py flisil] for i =1,2,3,4
with step of 0.5, /P, . [i,i]. This means that we

need to calculate 21 points for each variable of
the integral; overall for the four variables the
number of summations to calculate is 214 =
195000.

C. Application of Unscented KF (UKF)

Same as the EKF, the UKF is a recursive MMSE
(minimum mean square error) estimator. But unlike
the EKF, the UKF [14] does not approximate
the nonlinear state and measurement equations.

It uses the true nonlinear model of state and/or
measurement equation but approximates the pdf

of the state vector. This density is still Gaussian,

but is specified by a set of deterministically chosen
sample (or sigma) points. The sigma points completely
capture the true mean and covariance of the Gaussian
density and when propagated through the nonlinear
system, capture the posterior mean and covariance
accurately to the second order for any nonlinearity
[15].

The unscented transform (UT) is a method for
calculating the statistics of a random vector that
undergoes a nonlinear transformation. Let x be the n,
dimensional random vector, g : R"* — R a nonlinear
function and y = g(x). Assume the mean and the
covariance of x are X and P, respectively. The simple

where £ is a scaling parameter and (1/(n, + x)P,),
is the ith row or column of the matrix square root of

(n, + x)P,. The weights are normalized (i.e., add up
to 1).

2) Propagate each sigma point through the
nonlinear function

yi = 8(xy)s i=0,...2n 37)

x*

3) Estimated mean and covariance of y are
computed as

(38)
2n,
P = W -9 -
i=0
Next we describe the implementation of the UKF
assuming that at time k the state estimate and its
covariance are §k‘k and P, respectively.

1) Using (36) compute sigma points & (i)
and weights W, (i =0,...,8) corresponding to §k‘k
and Py .
2) Propagate sigma points using state equation (1)
as follows
0
£k+1|k(i) = ¢k[€k|k(i)] +G < g) . (39)
3) Compute the mean and covariance of the
predicted state S, , 1) and Py, using predicted sigma
points &, (i), weights W; and (38) as follows

8
Skaile = Z‘/Viék+1\k(i)
i=0

. ) 8 R (40)
procedgre for the qalculatlon of the first two moments P =Q+ Z Wil€ 15 (D) — Sy 1]
of y using the UT is as follows. 0
1) Compute (2n, + 1) sigma points® ; and their N A T
weights W, ' l L1 @D — Sy
Xo =X Wy =r/(n, + k) i=0
X, =X+ (\/(nx+/-@)Px)i Wo=1/2(m,+D] i=1,..n, (36)

Xi

i

3Recently, it has been published

on http://citeseer.nj.nec.comm/julier98reduced.html a new version
of unscented transformation that requires just (n, +2) sigma points
in lieu of (2n, + 1).

X (\/(nx+/<;)Px) W= 1/[2(n, + )]

i=n,+1,...
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4) Predict measurement sigma points using (10),
that is

S = HE 1 (). (41)
5) Predict measurement and covariances
8
Zyiyk = ZWﬂkH\k(i)
i=0
8
Pzz = Rk+1 + Zu/z"[gk+l\k(i) - Zk+1|k]
i=0
(42)

. ~ T
LSk 1D — Zg e

8
P, = Z Wi[£k+1|k(i) - §1<+1|k]'[<k+1|k(i) - 2k+1|k]T
i=0

where P, P, are, respectively, the covariance matrix
of the measurement and the cross-covariance of the
measurement and the state variable.

6) Compute the UKF gain and update state and
covariance
P71

§27 22

I<k+l =P

Statfer1 = Skartjk + K1 (e —Zipq ) (43)

— T
Pk+1|k+1 - Pk+1\k - Kk+1Pzsz+1'

Note that the UKF requires computation of a matrix
square root in (36) which can be done using Cholesky
factorisation.

D. Application of Particle Filter

The optimal recursive Bayesian filter of the state
vector in the MMSE sense is the mean of the posterior
pdf p(s; | Z,). The PF is a computer-based method
for implementing an optimal recursive Bayesian
filter by Monte Carlo simulations. Instead of analytic
solution or numerical approximation of a given
nonlinear and/or non-Gaussian problem, it performs
a considerable amount of computations in order to
approximate the posterior pdf. The central idea is to
represent the required pdf by a set of random samples
(particles). As the number of particles is increased,
the representation of the required pdf becomes more
accurate.

The PF in general requires the knowledge of: 1)
the initial state pdf p(sy); 2) the likelihood function
p(z, | s;), and 3) the statistics of process noise w,. The
initial pdf is p(sy) = py(So38o)0 Pojo)> Where 8,y and
Py are obtained by two-point differencing method
[8, p- 228], [1, p. 253]. From measurement (10),
it follows that the likelihood function is Gaussian,
Pz | sy) = py(z;;Hs, ,R,). As described in Section
III, the pdf of process noise is p(w;) = py(w,;;0,Q).

The PF algorithm can be described as follows.
Assume that we have a set of random samples

(particles) 3, = {s, (i) :i = 1,...n} from the posterior
density at time k, i.e. p(s, | Z;). The PF is an
algorithm for propagating and updating the set of
random samples ¥, to a new set of random samples
attime k+ 1, ¥, = {s;,,;(@) :i =1,...n}, which are
approximately distributed as the posterior density
P(Spr | Zyy ).

There are several different schemes for carrying
out this propagation of random samples, and hence
different particle filtering algorithms [7]. In this work
we use the sequential importance resampling (SIR)
or the bootstrap algorithm [10]. The bootstrap filter
propagates the random sample set by the following
steps.

1) Prediction: Each sample in 3, is passed
through the state equation (1) to obtain samples from
the prior density at time step k + 1

0
Sp1 (D) =Y s, D]+ G { g} + w, (i) (44)
where w, (i) is a sample drawn from the pdf of process
noise p(w;) = py(w;;0,Q).

2) Update: 1) Calculate the likelihood function
P(Zy ., | 8¢, (@) for each sample in the set X}, | =
{1 () :i=1,...n}. 2) Calculate the normalized
weights for each sample

p(zk+1 ‘ SZ+1(i))
’;:lp(zk+l |slt+l(]))

i) = 45
Qk+1( ) Z (45)
The weights g, (i) represent the probability mass
associated with element i of X/, ,. 3) Resample n
times from the discrete distribution defined by ¥;
and {q,,,():i=1,...n} to generate samples X, ,, =
{Sg, 1) i =1,...,n} so that for any j, Pr{s,,,(j) =
Sie1 (D} = Gy, ()

The MMSE estimate of s, ; is computed as the
mean of particles in ¥, ;:

. 1<
Sk1j+1 = ;Zskﬂ(i)' (46)
i=1
The choice of the number of particles n is very
important in the PF design. Note that the SIR
algorithm is not particularly efficient (requires
large n), because it is resampling from the discrete
approximation of the posterior density p(s;.; | Z;,)-
Some more recent PF schemes (see [7]) can operate
with a smaller number of particles without a
significant loss in the estimation accuracy. One such

scheme even employs the UT in the prediction step of
the PF [19].

VI.  NUMERICAL RESULTS

A.  Error Analysis

This subsection reports the mean and the
standard deviation of the estimation error
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Fig. 4. Mean estimation error of EKF.

€ = Sy — S 47)

for the four filters described above (EKF, CADET,
UKEF, and PF, respectively). All performance curves
were obtained by averaging over 100 independent
Monte Carlo runs. The ballistic target trajectories
were generated with the parameters as described in
Section III, with ¢ = 1. The radar parameters used in
simulations were: T =2 s; 0, = 100 m and 0, =
0.017 rad, detection and false alarm probabilities of
radar equal to 1 and 0, respectively.

First we present the results obtained using the
EKF: the mean of estimation error in target position
x and y and velocity v, = x and v, =y is shown in
Fig. 4. The standard deviation of error is displayed in
Fig. 5.4

The Monte Carlo error analysis suggests that
the EKF is approximately unbiased with standard
deviation just on top of the square root of the
CRLB.

Next we present the results on the application of
CADET. Figs. 6 and 7 depict the mean and standard
deviation of the filtering errors, respectively. As usual,
the curves are compared with the CRLB.

In this case the filter is also approximately
unbiased with standard deviation close to the square
root of the CRLB. The comparison of Figs. 4, 5 with
6, 7 demonstrates that EKF and CADET have very
similar performance at least for this study case.

Application of the UKEF first requires to select
the value of parameter . This parameter scales the
sigma points of the unscented transformation towards
or away from the mean of the prior distribution. If
this distribution is Gaussian, Julier, et al. [15] propose
to select ~ using the following heuristic: ng+ x =3
(because it minimizes the difference between the
moments of the standard Gaussian distribution and
the sigma points up to fourth order). By following

4We started the figures from time = 10 s because of the limited
performance of the filter initialization.
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Fig. 5. Errors standard deviation of EKF (solid line) versus

square root of theoretical CRLB (dashed line).

this heuristic one would need to use x = —1. Negative
k, however, can cause the calculated covariance to

be nonpositive semi-definite. As a compromise we
adopted x = 0 which produced good results for this
application. Figs. 8 and 9 show the UKF error mean
and standard deviation, respectively. Similarly to the
EKF and CADET, the UKF appears to be statistically
efficient (unbiased and attains the CRLB) target state
estimator.

As discussed in Section V-D, the PF approximates
the optimum recursive Bayesian nonlinear filter; as the
number of particles is increased the approximation
is more accurate. There are many traps in the
implementation of the PF mainly due to the sample
impoverishment problem (the number of distinct
particles monotonically decreases with time). A
simple though costly solution is to use a large number
of particles, which is what has been done here:

n = 25000 particles has been used to obtain the

error curves shown in Figs. 10 and 11. These error
curves are similar to those obtained by EKF, CADET,
and UKF. In summary all four filters show similar
error performance: it appears that nonlinearity of the
dynamic state equation is not severe for the case when
ballistic coefficient 5 is known.

B. Consistency Tests

All nonlinear filters considered in this study
provide, in addition to the state estimates §k‘k, a
self-assessment of their estimation errors. For the
EKF, CADET, and UKF this self-assessment is given
in the form of the covariance matrix Py,. The PF
provides an estimate of the entire posterior density,
from which one can compute both the state estimate
as in (46) and its covariance matrix as

- . .
P = —— D (5:0) =8 ) () —8g)".  (48)
i=1
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Fig. 9. Errors standard deviation of UKF (solid line) versus
square root of theoretical CRLB (dashed line).
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A filter is referred to as consistent (or credible) if its
covariance matrix is equal to the actual mean square
error (MSE) matrix [17]. The most common statistical
test for filter consistency is the one based on the
average normalized estimation error squared (NEES)
defined as [1, 17]

M
1 . . .
& = > Le]1" P}, 1 "e]
k Mong £k T

(49)

where ei is the error vector defined in (47), with
index j =1,...M denoting the Monte Carlo run, n,
the dimension of the error vector, and M the number
of Monte Carlo runs. The consistency test assumes
that estimation errors are zero-mean Gaussian. The
average NEES of (49) then should be szls » random
variable with n M degrees of freedom: its mean value
is 1 and its variance is 2/nM. The filter is accepted
as being consistent (credible) at level « if &, € [r,r,]
with probability 1 — a. The limits of the acceptance
interval, r; and r,, are calculated at level a = 0.05 (i.e.,

B
< 800
2
« 600
g
o 400
200
0
20 40 60 80 100 120
Time/[s]
250
200
Q
E 150
o=
hed
® 100
g
¢ 50
0 :
20 40 60 80 100 120
Timel(s]
Fig. 11.

864

1.2 1.2
@ Q
g ! g !
0.8 0.8
0.6 0.6
0 50 100 0 50 100
TIME [s] TIME [s]
(@) (b)
12 1.2
@ ?
g g !
0.8 0.8
0.6 0.6
4] 50 100 0 50 100
TIME [s] TIME [s]
) (d)

Fig. 12. Average NEES. (a) EKF. (b) CADET. (c) UKF. (d) PF.

with probability 0.95) as follows [17]

1 2
na® g (i1.96 +\/2n M — 1)

The results of the consistency test for EKF,
CADET, UKF and the PF are shown in Fig. 12(a),
(b), (¢), and (d), respectively. The number of
Monte Carlo runs is M = 100 and o = 0.05, which
corresponds to the acceptance limits r; = 0.865 and
r, = 1.1421, indicated in Fig. 12 by horizontal dashed
lines. The mean of the estimation error has been
removed prior to the calculation of the average NEES
[17]. The ballistic target trajectories were generated
with the parameters as described in Section III, with
g = 1. The radar parameters used in simulations as
in Sec. VI-A were: T =2 s; 0, =100 m and 0. =
0.017 rad. Since the total number of scans is 60, the
average NEES of a consistent filter is expected to
be outside the acceptance interval 5% of time, which
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TABLE 1
Relative Computational Load

Filter Relative Computational Load
EKF 1
CADET 300
UKF 3
PF (n = 25000) 440

amounts to 3 scans. The results in Fig. 12 indicate that
all four filters are consistent.

VII.  CONCLUSIONS

The problem of tracking a ballistic target on
reentry has been studied here. Four suboptimum
filters have been designed and their performance
compared with the theoretical CRLB derived for
this estimation problem. From the tracking accuracy
point of view, all the four filters (EKF, CADET,
UKEF, and PF) appear to be statistically efficient (all
converge to zero bias with error standard deviation
close to the CRLB). Moreover, all four filters produce
a credible estimation error self-assessment in form
of the filter covariance. In addition to the study case
shown in Section VI, the filters have been tested for
a wide variety of parameters: standard deviation of
radar measurement errors, measurement period 7,
radar detection probability (also with P, < 1), values
of ballistic coefficients (3, values of initial target
coordinates and speed. The results shown here are
representative of several study cases.

The computational complexity of the filters is
described in Table I. This table was compiled by
measuring the CPU load required for the MATLAB
implementation of each of the filters, relative to the
CPU load required by the EKF. The conclusion of the
study is that EKF is the preferred nonlinear filter for
tracking ballistic targets: it combines the statistical
efficiency with a modest computational cost.

In the presented study the target ballistic
coefficient was assumed to be a known parameter.
When g is not known it should be estimated; this
topic has recently been studied in [20] and [15]
where it was shown that the EKF may diverge. An
explanation of the inadequacy of EKF is related to
the following: in (8) 3 appears at the denominator,
thus a small estimation error on 3 will be amplified.
In the quoted references it was shown that the
preferred filtering solution in terms of performance
and computational cost is the UKF which doesn’t
approximate the nonlinear function.

Topics for future researches are 1) extend the
comparison to alternative tracking filters, such the
one proposed in [5, 6] and applied to ballistic target
tracking in [21]; 2) refine the target kinematics model;
3) study the capability of the trackers to predict the
target state ahead in time before the availability of

the radar measurements; 4) study the possibility to
estimate the launching and landing points of the target
from the segment of the ballistic trajectory measured
by the radar; it is a matter of how the model of target
trajectory fits the reality; if the model is enough
accurate and enough measured data are available,

in principle it is possible to estimate backwards and
ahead of the target trajectory.
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